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It is shown that the LCAO molecular Hartree-Fock equations for a closed-shell configuration 
can be reduced to a form identical with that of the Hoffmann extended Hiickel approximation if (i) 
we accept the Mulliken approximation for overlap charge distributions, and (ii) we assume a uniform 
charge distribution in calculating two-electron integrals over molecular orbitals. Numerical compari- 
sons indicate that this approximation leads to results which, while unsuitable for high accuracy 
calculations, should be reasonably satisfactory for molecules that cannot at present be handled with 
facility by standard LCAO molecular Hartree-Fock methods. 

Es wird gezeigt, dab die Hartree-Fock Gleichungen fiir eine abgeschlossene Schale unter der Voraus- 
setzung, dab (i) die Mulliken-N~iherung und (ii) zur Berechnung der zwei Zentrenintegrale eine gleich- 
m~iBige Ladungsverteilung angenommen werden k6nnen, in eine mit der EH-N~iherung iiberein- 
stimmende Form gebracht werden k6nnen. Ein numerischer Vergleich ergibt dann Resultate, die fiir 
Molekiile, die nach der LCAO-HF-Methode nicht behandelt werden k6nnen, ausreichend genau sind. 

On montre que les 6quations mol6culaires de Hartree-Fock L.C.A.O. pour une configuration/l 
couches eompl6tes peuvent &re r6duites & une forme idenfique & celle de l'approximation Hiickel 
Etendu de Hoffman, si (1) on admet l'approximation de Mulliken pour les distributions de charge de 
recouvrement et (2) on suppose une distribution de charge uniforme lors du calcul des int6grales 
bi61ectroniques entre orbitales mol6culaires. Des comparaisons num6riques indiquent que cette 
approximation conduit & des r6sultats qui, sans pouvoir servir ~t des calculs tr~s pr6cis, sont raisonna- 
blement satisfaisants pour des mol6cules qui ne peuvent actuellement &re facilement &udi6es par 
les m&hodes mol6culaires standard de Hartree-Fock. 

t. Introduction 
Molecular-orbital theory has taken many forms, and has been dealt with by 

many approximations. In 1963 Hoffmann [-1] presented a formalism which he 
referred to as"extended Hfickel" (EH). In the 1930's, however, this formalism would 
simply have been called "molecular-orbital", since it is a straightforward applica- 
tion of molecular orbital (MO) theory, using a one-electron Hamiltonian. Hoff- 
mann referred to it as "extended Hiickel" because it did not limit itself to 7r-electron 
systems, and was able to deal with saturated molecules by including all overlap 
integrals. In these respects it did "extend" the usual, or "simple Hiicker' method, 
which was customarily applied to 1r-electrons, and assumed complete ~ - a  
separability. 

In the Hoffmann formalism each MO is assumed to be of the form 

= Z Cj zp (x) 
p 

where the Cjp are LCAO coefficients, and the )~p are normalized atomic orbitals. 
If we use the variation method with an effective one-electron Hamiltonian h, 
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these coefficients are given by the secular equations 

(hpq - ejSpq) Cjq = O, j = 1, 2 . . . .  ; p = 1, 2 . . . .  (2) 
q 

where the ej are the orbital energies, the Spq are atomic overlap integrals, and the 
hpq are the matrix components of h, defined by 

hpq = I Z* hzq dz.  (3) 

Throughout  this paper subscripts i,j will refer to molecular orbitals, and p, q, r, s 
to atomic orbitals. These latter orbitals may be of rc or of a type. 

Elimination of the Cjq in (2) leads to the typical secular determinantal equation 

[Ihpq - eSpq[I = 0 (4) 

from which the orbital energies ej are found, if the Spq and hpq are known. When 
Slater orbitals are used it is easy to compute the Spq. But since the precise form ofh 
cannot be written down in a one-electron model, we make no attempt to compute 
the hpq directly. Instead Hoffmann argues that hpp should be identified with the 
valence-state ionization potential of Zp, and that hpq should be proportional to 
Spq, so that /hpp + hqq'~ 

In (5) k is a constant subsequently to be chosen in such a way as to give best results 
for the total energy i. In any one-electron model such as this, the total energy is 
taken to be the sum of the orbital energies. 

An alternative way of evaluating the hpq in the EH method has recently been 
proposed by Newton, Boer, Palke and Lipscomb [21, 22]. It is clear that h is 
itself the sum of a kinetic energy operator and a potential energy term (in which 
nuclear attractions, Coulomb repulsions and exchange interactions are all 
involved). Newton et al. calculate the kinetic energy part of hpq exactly, and use a 
Mulliken approximation for the potential energy part. Diagonal elements and 
proportionality constants for this part were estimated from SCF procedures for 
small, chemically similar, molecules. Their approach was designed to see how 
well they could reproduce the SCF secular determinant within the EH formalism. 
In this paper we proceed in the opposite direction; our starting points are the 
elements of the SCF secular determinant, which are examined to see what approxi- 
mations must be made within the SCF scheme in order to reduce the SCF equa- 
tions to EH form. 

There are, of course, certain circumstances in which the SCF equations can 
easily be shown to reduce to Hfickel-type equations. Thus in the standard-excited- 
state equations of Hall [9] for re-electron aromatic hydrocarbons, it can be shown 
that the LCAO coefficients are often precisely the same as in the Htickel scheme. 
However, this particular state is not of direct value for our purposes. Further, 
Pople [23] has shown that if the Pariser-Parr approximation of zero differential 
overlap is accepted then apart from some (usually) small terms in inverse inter- 
nuclear distances, the total r~-electron energy is given by an expression (Eq. 2.20) 
identical in form to that of Hiickel theory. Both of these writers adopt the approxi- 

Our conclusions in this paper would not be significantly altered if, instead of the arithmetic 
mean in (5), we used the Wolfsberg-Helmholtz-Mulliken geometrical-mean formula hpq = k ~/(hpp hqq) Spq 
recently advocated by Allen and Russel [1]. 



318 G. Blyholder and C. A. Coulson: 

mation of neglecting all overlap integrals. This is particularly serious with ~r- 
orbitals, in which an overlap integral may be as large as 0.8. We have therefore 
thought it worthwhile to make an independent study of the equivalence of SCF 
and EH equations, in which overlap is not neglected from the start. 

2. Significance of the Overlap Integrals Spq 
The EH method is designed to take advantage of the fact that modern computers 

can solve complete secular determinants very readily, so that there is no need to 
neglect any of the off-diagonal elements in the secular determinants. It aims to 
produce reasonable values for important electronic properties by semi-empirical 
methods; and its success must depend on how well it can approximate the more 
accurate SCF Hamiltonian matrix elements. Central to the EH method is the 
approximation of making the off-diagonal matrix elements hpq proportional to 
the corresponding overlap integrals Spq. 

This particular assumption was introduced, as early as 1942, by Wheland [-283, 
who used it in ~-electron calculations, but without any theoretical justification. 
He applied it to near-neighbour overlaps, neglecting all further interactions. 
Mulliken [193 reported an empirical observation that for the ~-electrons of 
ethylene the calculated values of the ratio illS varied by only about 10 % when 
the carbon-carbon distance changed from 0.998 to 1.664 h. He also noted, empiri- 
cally, that this ratio did not undergo large variations for the cases of H2 and benzene. 
Within a very short time thereafter the proportionality of matrix elements hpq 
to overlap integrals Sp~ developed from being a method of estimating small changes 
in resonance integrals between adjacent atoms to being a method for estimating 
all off-diagonal elements h,q [2, 5, 12, 13, 16, 17, 18, 29]. In this sense the method 
was already in use before it was referred to as the "extended" Hfickel method. 
Nevertheless it is an appropriate label for a method of sufficient generality which 
embodies in the MO framework the following features: 

(i) use of LCAO representation of molecular orbitals, 
(ii) use of a one-electron Hamiltonian 

(iii) overlap integrals not neglected, 
(iv) hpq proportional to Spq, 
(v) usable for saturated as well as unsaturated ~-electron molecules. In order 

that this method may give reliable predictions it is necessary that the corresponding 
secular determinant (4) should be almost identical with the SCF secular deter- 
minant. For then both orbital energies and LCAO coefficients given by the two 
methods will be closely similar. It is the way in which this equivalence depends 
upon feature (iv) above that provides the main concern of this paper. We shall 
first deal with the general theory, and shall then conclude with a numerical study 
of some illustrative examples. 

3. General Theory 
In the Roothaan form [253 of the SCF MO equations, we suppose that the 

total electronic wave function is of single-determinant Slater form, in which the 
molecular spinorbitals are products of space orbitals q~j, as in (1), and conven- 
tional spin functions. The basic equations are 

(Fpq - ejSpq) Cjq : 0, (6) 
q 
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so that the orbital energies ej are found from the determinantal equation 

IlFpq - eSp~ll = 0. (7) 

In (6) and (7) Feq is usually written as 

F~ = H ~  + Gpq (s) 
where Hpq (to be distinguished from our previous Hfickel hpq) comes from the 
1-electron part of the total Hamiltonian and Gpq from the 2-electron part. Thus, 
if V~ is the potential due to nucleus a 

1 

Gpq = ~ {2(pq/ii)- (pi/iq)} (gb) 
i 

where the/-summation is over all doubly-occupied orbitals qSi, and 

(pq/ij)= 1 Z*(1) Zq(1) r ~  2 q~*(2)q~j(2) dzl dz2. (10) 

Our question is: under what conditions will the Fpq of (7) and (8) be the same as 
the hpq of (4)? 

Now Mulliken [19] has shown that, to a good approximation, multicentre 
electron repulsion integrals involving atomic orbitals p, q, r, s may be simplified 
by putting 

(pq/rs) ~ �88 + (pp/ss) + (qq/rr) + (qq/ss)}. (11) 

With this approximation the first term in (9 b) becomes 

2(pq/ii) = ~ 2. S~P~q . {(pp/ii) + (qq/ii)} . 
i i 

The term (pp/ii) is the Coulomb repulsion between an electron in the atomic 
orbital Zp and an electron in the molecular orbital ~b~. But molecules have reson- 
ably uniform charge distributions, and in particular, as the Coulson-Rushbrooke 
theorem proves, alternant hydrocarbons have exactly uniform atomic charge 
densities in their ground states. We may therefore expect the sum ~ (pp/ii) will 

be approximately the same, regardless of which atom p we have chosen. Thus 

we find that ~ 2(pq/ii) ~ constant x Spq. (12) 
i 

Applying the Mulliken approximation to the second term of (gb), we have 

~ (pi/iq)~ ~�88 SpiS~q{(pp/ii)+(pp/qq)+(ii/ii)+(ii/qq)}. (13) 
i i 

On the assumption of a reasonably uniform charge distribution as before, the 
summations over i in (p p I i i), (i i p ii) and (i i l q q) would be expected to give constants 
independent of p and q. But the presence of the additional term (pp[qq) and the 
factors Spi S~q in the summation means that there is no strictly analogous formula 
to (12) which applies to the exchange term (13). Fortunately however (see later) 
it appears from numerical calculations for linear H6, ethylene, butadiene and 
benzene that the first term in @q is much larger than the second. If this is true 
generally, it will be approximately true to say that Gpq c~ Spq. The numerical 
justification for this is given in chapter 5. 
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We now turn to Hpq. Equation (9 a) shows this to be the sum of a kinetic energy 
term and a core-attraction term. Numerical study of the kinetic energy term shows 
it to be large ifp = q, small ifp and q are adjacent atoms, and negligible otherwise. 
This is illustrated for s and p~ orbitals in Table 1. 

This still leaves the core-attraction terms, to which Barker and Eyring [3] 
have applied the Mulliken approximation, and found inaccuracies of about 

Table 1. Values of kinetic energy integral, J'Zp(-~* 1 V2) zqdz as a Junction of the p - q  separation, 
using Slater orbitals 

l s  orbitals (orbital exponent 1) p, orbitals (orbital exponent 3.18) 

Separation Kinetic Overlap Separation Kinetic Overlap 
(au) energy integral (au) energy integral 

(au) (au) 

0 0.5000 1,000 0 0.5000 1.000 
2 0.1128 0.586 2.64 0.0373 0.258 
4 -0.0030 0,189 5.28 -0.0068 0.017 
6 - 0.0060 0,047 7.92 - 0.0006 0.0017 
8 -0.0021 0,010 

10 - 0.0005 0,002 

10-20 %. Some of the deviations were positive, others were negative. In general, 
however, this term gives 

1 1 , 1 

Now _~ 1 will have approximately the same value at all nuclei of the molecule, 

except for the end atoms of a chain, for which the number of close neighbour 
nuclei is less than for "internal" atoms. Thus, except possibly for such edge atoms, 
the potential energy part of Hpq is approximately proportional to Spq. 

Combining the various results just described we may therefore conclude that 
(i) if p and q are no closer than second-neighbours, Fp~ should be closely 

proportional to Spq, 
(ii) if p and q are first-neighbours there should be a small variation from pro- 

portionality due chiefly to the kinetic energy operator, 
(iii) ifp and q are the same atom, the kinetic energy part of Fpq shifts the numeri- 

cal value right out of the sequence of other Fpq matrix elements. 
Thus the EH formalism of putting hpq ~ Spq (p 4 q) is reasonably justified, and 

the necessity of the constant k in (5), with k not having the expected value of 1, 
is seen to arise from the kinetic-energy part of the Hamiltonian, which affects the 
diagonal terms differently from the off-diagonal ones. The importance of the 
kinetic-energy contribution to these off-diagonal elements has recently been 
recognized by Jcrgensen [14] and by Radtke and Fenske 1-24] in some studies of 
transition metal complexes. These latter authors wrote: "terms of considerable 
magnitude which do not vary as functions of overlap integrals, make substantial 
contributions to off-diagonal elements". Our discussion has shown just what 
these are, and why it is not possible to choose k = 1.75 in (5), as originally suggested 
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by Hoffmann, nor to put k = 2 -  Sii as urged by Carroll and McGlynn [4]. We 
can also see why Newton et al. [21, 22] found it necessary to use a different value 
of k for each type of bond, and why Cusachs [6] who did not consider any two- 
electron terms, adopted different variations for the kinetic- and potential-energy 
matrices, putting 2 

2 Uij ~ 2 j "  

4. Total Energy Expressions, and Electronic Spectra 
The discussion in chapter 3 dealt with the equivalence of orbital energies and 

LCAO coefficients in SCF and EH methods. This equivalence, however, does not 
imply equivalence of total energy E. In the SCF scheme there are the relations [25] 

e = 2 + ( 2 J i j - / q j )  (15) 
i i , j  

E = 2 ~ ei - ~, (2Jij - Kij) (16) 
i i , j  

E : 2 ei q- 2 Hi . (17) 
i i 

The single summations are over all doubly-occupied molecular orbitals ~b~, and 
the double ones are over all ~b~ and ~bj including i = j .  These equations show that 
although the Hiickel energy is a good approximation for the various ionization 
potentials, it is bad for the total energy. For  example for linear H 6 (see chapter 5 for 
an explanation of the calculation) the simple electronic energy is 2 ~ e~ = - 3.23 a.u. 

whereas in the SCF scheme the total energy from Eq. (17) is -7 .42  a.u. If we are 
interested in total energies there seems no alternative to the calculation of the 
exchange and Coulomb integrals; if we have used the EH procedure to get the 
ei and LCAO coefficients, then we can determine the F matrix in terms of various 
atomic integrals. All those that involve the kinetic energy, and the diagonal 
elements for the nuclear attractions and r12-integrals, can readily be evaluated 
numerically; and it is in the spirit of this approximation to put the remaining 
off-diagonal elements proportional to overlap, or - as suggested by Newton et al. 
[21, 22] - estimate their values by comparison with suitable reference compounds. 
We shall show in chapter 5 that both procedures give a reasonable reproduction 
of the F matrices calculated by direct evaluation of all integrals. 

In the evaluation of E, Eq. (17) is preferred to either (15) or (16), since the e i 
are already determined in solving the secular determinant; and only one-electron 
terms are involved in computing the Hi. 

It is natural to estimate electronic excitation energies from the ground state, 
as suggested by Roothaan [25], by using the virtual orbitals of the ground-state 
calculation as excited-state orbitals. However an improvement of 5-20 % has 
been indicated [7, 15] if new orbitals are calculated for each excited state. But 
in view of the approximations inherent in the EH method, it is doubtful if this 
extra labour is justified. Moreover, most u.v. excitations lead to a displacement of 
charge, so that, except for situations such as the p-band of alternant hydrocarbons, 
in which no gross redistribution of charge occurs [20], the assumption of a uniform 

2 Further comment on the Cusachs approximation can be found in M. D. Newton, J. chem. 
Physics 45, 2716 (1966) and L. C. Cusachs, ibid. 2717 (1966). 
22 Theoret, chim. Acta (Bed.) Vol. 10 
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charge distribution, required in our justification of the E H  formalism, is in general 
less valid for excited states than for the ground state. 

5. Numerical Comparisons 
We turn to some numerical illustrations of our general conclusions in chapter 3. 

First we have considered a linear complex H6, using Slater 1 s orbitals on each 
atom. We have made a SCF-LCAO-MO calculation for the system. Using 
Roothaan 's  equations, and an internuclear spacing of 2 a.u. in this calculation, 
all one- and two-centre integrals were obtained from standard tables [27]; 

Table 2. Comparison of matrix elements calculated from Roothaan's equations with elements which are 
proportional to overlap for the case of linear H 6 

H12 
q G;q G'[~ Glq Hlq ~--'Slq Flq Slq 

S12 lq $12 lq S12 lq 

1 1.69 1.86 -0.46 -0.66 1.23 1.19 
2 1.09 (1.09) -0.39 (-0.39) 0.696 (0.696) -1.164 (-1.164) -0.465 0.586 
3 0.36 0.35 -0.14 -0.13 0.224 0.224 -0.409 -0.375 -0.185 0.189 
4 0.090 0 .87  -0.030 -0.031 0.060 0.056 -0.130 -0.093 -0.069 0.047 
5 0.019 0.019 -0.0065 -0.0068 0.012 0.012 -0.023 -0.019 -0.010 0.010 
6 0.0034 0.0037 -0.0052 -0.0001 -0.0018 0.0023 -0.0035 -0.003 -0.005 0.002 

the three- and four-centre electron-repulsion integrals were obtained with the 
Mulliken approximation [19]; the three-centre nuclear attraction integrals were 
taken from Hirschfelder and Weygandt [10]. We found agreement, both as 
regards energies and LCAO coefficients, with previous calculations using similar 
methods for H 4 and H 6 [8, 261. Table 2 gives comparisons of matrix elements 
calculated in this way and with the assumption of proportionali ty to overlap. 

p/  ! - 

In this table Gpq = G'pq -I- Gpq, where Gpq 1s  the first (i.e. Coulomb) part  of Gpq given 
by (9b) and (12); and Gpq is the second (i.e. exchange) part  of Gpq as in (gb) and (13). 
A comparison of entries, particularly in the last two columns of the table, shows 
that for linear H 6 off-diagonal matrix elements o f F  are reasonably well represented 
by terms proport ional  to overlap. 

Linear H 6 is a rather theoretical system. So we have made various similar 
calculations for the more realistic systems ethylene, trans-butadiene and benzene. 
The results are shown in Tables 3, 4 and 5. Again there is a reasonable (but far 
from perfect) correspondence for the off-diagonal elements. 

Some confirmation of our general conclusions can be found from the work 
of Newton et al. [21] on methane. These writers found a close correspondence 
between matrix elements calculated from Roothaan 's  formulae and elements 
calculated by adding together (i) a purely theoretical kinetic energy term, and (ii) 
a potential energy term of which the diagonal elements were taken over from 

Table 3. Comparison of matrix elements calculated from Roothaan's equations with elements which are 
proportional to overlap, for the case of ethylene 

Gh S12 Gil G~'2 $12 G~'I G12 S12 Gll V12 ~ S~2 VI~ 
0.268 0 .268  -0.256 -0.106 0.012 0.162 0.95 1.05 

" Vdenotes the core attraction term in Hpq as in Eq. (14). 
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Table 4. Comparison of matrix elements calculated from Roothaan's equations with elements which are 
proportional to overlap, for the case of trans-butadiene 

G" Gl .s  ,2.s FI .s q G'12 G[2" S G~q "12. S Glq Hlq Flq 
$1 ~ lq $12 lq Sa2 lq Sa 2 lq $I; lq 

1 1.30 1.49 -0 .35  -0 .95  0.95 0.53 
2 0.39 (0.39) -0 .25  ( -0 .25)  0.14 (0.14) -0.419 (-0.419) -0.276 (-0.276) 
3 0.047 0.044 -0.033 -0.028 0.014 0.016 -0.049 -0.047 -0.035 -0.024 
4 0.0028 0.0107 +0.013 -0.007 0.016 0.004 -0.0107 -0.0115 -0.0054 -0.0059 

Table 5. Comparison of matrix elements calculated from Roothaan's equations with elements which are 
proportional to overlap, for the case of benzene 

G12 q G, 1 q G'Iz G['z . $1 q G1 q , S1 q 
812 " S 1 q Gltq S1 ~ 812 

1 1.95 1.95 -0 .39 -0 .76  1.56 1.19 
2 0.508 (0,508) -0 .20  (-0.20)  0.309 (0.309) 
3 0.076 0,076 - 0.037 - 0.030 0.038 0.046 
4 0.035 0,035 +0.015 -0.014 0.050 0.021 

Roothaan-type calculations for ethane, and the off-diagonal elements were 
made proportional to overlap. 

The following conclusions follow from our present study: 
1. Molecular LCAO Hartree-Fock equations can be reduced to the extended- 

Hfickel form if we adopt Mulliken's approximation for an overlap-charge distribu- 
tion, and assume an approximately uniform charge distribution in the molecule. 

2. There is an advantage in distinguishing between the kinetic energy terms 
(which are not proportional to overlap) and the other items (most of which are 
much more closely proportional to overlap). 

3. The origin of the difficulty with the numerical scale factor k in the Wolfsberg- 
Helmholtz formula (5) lies chiefly in the variation of kinetic-energy matrix elements 
with distance apart of the two atoms involved. 

4. Numerical calculation for systems with a or with ~ electrons indicate that 
the approximations considered produce results which, while not appropriate for 
a requirement of high accuracy, should be reasonably satisfactory for molecules 
that cannot at the present time be conveniently handled by full molecular Hartree- 
Fock methods, 
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